Close

1. Identity statement
Reference TypeJournal Article
Sitemtc-m21b.sid.inpe.br
Holder Codeisadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S
Identifier8JMKD3MGP3W34P/3NNLCBS
Repositorysid.inpe.br/mtc-m21b/2017/04.19.17.55   (restricted access)
Last Update2017:04.19.17.55.33 (UTC) administrator
Metadata Repositorysid.inpe.br/mtc-m21b/2017/04.19.17.55.33
Metadata Last Update2018:06.04.02.27.25 (UTC) administrator
DOI10.1016/j.physd.2017.01.005
ISSN0167-2789
Citation KeyGrzybowskiMacaYone:2017:LyThSu
TitleThe Lyapunov–Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators
Year2017
MonthMay
Access Date2024, June 15
Type of Workjournal article
Secondary TypePRE PI
Number of Files1
Size2256 KiB
2. Context
Author1 Grzybowski, Jose M. V.
2 Macau, Elbert Einstein Nehrer
3 Yoneyama, T.
Resume Identifier1
2 8JMKD3MGP5W/3C9JGUT
Group1
2 LABAC-COCTE-INPE-MCTIC-GOV-BR
Affiliation1 Universidade Federal da Fronteira Sul (UFFS)
2 Instituto Nacional de Pesquisas Espaciais (INPE)
3 Instituto Tecnológico de Aeronáutica (ITA)
Author e-Mail Address1 jose.grzybowski@uffs.edu.br
2 elbert.macau@inpe.br
JournalPhysica D: Nonlinear Phenomena
Volume346
Pages28-36
Secondary MarkA1_ENGENHARIAS_III A2_MATEMÁTICA_/_PROBABILIDADE_E_ESTATÍSTICA A2_INTERDISCIPLINAR A2_GEOCIÊNCIAS B1_MEDICINA_II B1_ENGENHARIAS_IV B1_ENGENHARIAS_II B2_ENSINO B2_CIÊNCIA_DA_COMPUTAÇÃO B2_ASTRONOMIA_/_FÍSICA
History (UTC)2017-04-19 17:55:33 :: simone -> administrator ::
2017-04-19 17:55:34 :: administrator -> simone :: 2017
2017-04-19 17:56:03 :: simone -> administrator :: 2017
2018-06-04 02:27:25 :: administrator -> simone :: 2017
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Content TypeExternal Contribution
Version Typepublisher
KeywordsChaotic systems
Isochronal synchronization
Lyapunov–Krasovskii
AbstractThis paper presents a self-contained framework for the stability assessment of isochronal synchronization in networks of chaotic and limit-cycle oscillators. The results were based on the LyapunovKrasovskii theorem and they establish a sufficient condition for local synchronization stability of as a function of the system and network parameters. With this in mind, a network of mutually delay-coupled oscillators subject to direct self-coupling is considered and then the resulting error equations are block-diagonalized for the purpose of studying their stability. These error equations are evaluated by means of analytical stability results derived from the LyapunovKrasovskii theorem. The proposed approach is shown to be a feasible option for the investigation of local stability of isochronal synchronization for a variety of oscillators coupled through linear functions of the state variables under a given undirected graph structure. This ultimately permits the systematic identification of stability regions within the high-dimensionality of the network parameter space. Examples of applications of the results to a number of networks of delay-coupled chaotic and limit-cycle oscillators are provided, such as Lorenz, Rössler, Cubic Chua's circuit, Van der Pol oscillator and the HindmarshRose neuron.
AreaCOMP
Arrangementurlib.net > LABAC > The Lyapunov–Krasovskii theorem...
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Content
agreement.html 19/04/2017 14:55 1.0 KiB 
4. Conditions of access and use
Languageen
Target Filegrzy_lyapu.pdf
User Groupsimone
Reader Groupadministrator
simone
Visibilityshown
Archiving Policydenypublisher denyfinaldraft24
Read Permissiondeny from all and allow from 150.163
Update Permissionnot transferred
5. Allied materials
Next Higher Units8JMKD3MGPCW/3ESGTTP
Citing Item Listsid.inpe.br/bibdigital/2013/09.22.23.14 5
sid.inpe.br/mtc-m21/2012/07.13.14.45.07 2
DisseminationWEBSCI; PORTALCAPES.
Host Collectionsid.inpe.br/mtc-m21b/2013/09.26.14.25.20
6. Notes
Empty Fieldsalternatejournal archivist callnumber copyholder copyright creatorhistory descriptionlevel e-mailaddress format isbn label lineage mark mirrorrepository nextedition notes number orcid parameterlist parentrepositories previousedition previouslowerunit progress project rightsholder schedulinginformation secondarydate secondarykey session shorttitle sponsor subject tertiarymark tertiarytype url
7. Description control
e-Mail (login)simone
update 


Close