Close

1. Identity statement
Reference TypeJournal Article
Sitemtc-m16.sid.inpe.br
Holder Codeisadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S
Identifier6qtX3pFwXQZ3r59YDa/GswRd
Repositorysid.inpe.br/iris@1916/2005/06.14.17.25   (restricted access)
Last Update2005:10.11.15.10.00 (UTC) administrator
Metadata Repositorysid.inpe.br/iris@1916/2005/06.14.17.25.40
Metadata Last Update2018:06.05.01.20.21 (UTC) administrator
Secondary KeyINPE-13084-PRE/8344
ISSN0167-2789
Citation KeyRempelChiaMacaRosa:2004:DeNoSc
TitleAnalysis of chaotic saddles in low-dimensional dynamical systems: the derivative nonlinear Schrodinger equation
Year2004
MonthDec.
Access Date2024, June 15
Secondary TypePRE PI
Number of Files1
Size935 KiB
2. Context
Author1 Rempel, Erico Luiz
2 Chian, Abraham Chian Long
3 Macau, Elbert Einstein Nehrer
4 Rosa, Reinaldo Roberto
Resume Identifier1
2
3 8JMKD3MGP5W/3C9JGUT
4 8JMKD3MGP5W/3C9JJ5D
Group1 DGE-INPE-MCT-BR
2 LAC-INPE-MCT-BR
Affiliation1 Instituto Nacional de Pesquisas Espaciais (INPE)
JournalPhysica D: Nonlinear Phenomena
Volume199
Number3-4
Pages407-424
History (UTC)2005-10-11 14:10:20 :: sergio -> administrator ::
2007-03-21 15:12:03 :: administrator -> banon ::
2007-03-21 15:16:29 :: banon -> administrator ::
2007-03-21 15:43:13 :: administrator -> sergio ::
2008-01-07 12:52:49 :: sergio -> administrator ::
2018-06-05 01:20:21 :: administrator -> marciana :: 2004
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Content TypeExternal Contribution
Keywordsnonattracting chaotic sets
low-dimensional dynamical systems
interior crisis
Alfven waves
plasmas /OPEN HYDRODYNAMICAL FLOWS
TRANSIENT CHAOS
COEXISTING ATTRACTORS
BASIN BOUNDARIES
ALFVEN WAVES
CRISIS
TRANSITION
TURBULENCE
SETS
SCATTERING
AbstractIn this paper, we present a computational study of nonattracting chaotic sets known as chaotic saddles in a low-dimensional dynamical system describing stationary solutions of the derivative nonlinear Schrodinger equation, a driven-dissipative model for Alfven waves. These chaotic saddles have "gaps" which are filled at chaotic transitions, such as a saddle-node bifurcation and an interior crisis. We give a detailed explanation of how to numerically determine the chaotic saddles, and describe how a chaotic attractor after an interior crisis point can be "decomposed" into two chaotic saddles, dynamically connected by a set of coupling unstable periodic orbits created by a gap filling "explosion" after the crisis. This coupling between two chaotic saddles is responsible for the intermittent dynamics displayed by the chaotic system after the interior crisis. (C) 2004 Elsevier B.V. All rights reserved.
AreaCEA
Arrangement 1urlib.net > Produção anterior à 2021 > LABAC > Analysis of chaotic...
Arrangement 2urlib.net > BDMCI > Fonds > Produção anterior à 2021 > DIDGE > Analysis of chaotic...
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Contentthere are no files
4. Conditions of access and use
Languageen
Target File80.pdf
User Groupadministrator
sergio
Visibilityshown
Copy HolderSID/SCD
Archiving Policydenypublisher denyfinaldraft24
Read Permissiondeny from all and allow from 150.163
5. Allied materials
Next Higher Units8JMKD3MGPCW/3ESGTTP
8JMKD3MGPCW/3EU29DP
DisseminationWEBSCI; PORTALCAPES.
Host Collectionsid.inpe.br/banon/2003/08.15.17.40
6. Notes
Empty Fieldsalternatejournal archivist callnumber copyright creatorhistory descriptionlevel documentstage doi e-mailaddress electronicmailaddress format isbn label lineage mark mirrorrepository nextedition notes orcid parameterlist parentrepositories previousedition previouslowerunit progress project readergroup rightsholder schedulinginformation secondarydate secondarymark session shorttitle sponsor subject tertiarymark tertiarytype typeofwork url versiontype
7. Description control
e-Mail (login)marciana
update 


Close